cspnet 论文解读 【2021-09-22】CSPNet 是作者 Chien-Yao Wang 于 2019 发表的论文 CSPNET:A NEW BACKBONE THAT CAN ENHANCE LEARNING CAPABILITY OF CNN。也是对 DenseNet 网络推理效率低的改进版本。
VoVNet论文解读 【2021-09-20】Youngwan Lee* 作者于 2019 年发表的论文 An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection. 是对 DenseNet 网络推理效率低的改进版本。
densenet 论文解读 【2021-09-15】在 DenseNet 中,让网络中的每一层都直接与其前面层相连,实现特征的重复利用。同时把网络的每一层设计得特别“窄”(特征图/滤波器数量少),即只学习非常少的特征图(最极端情况就是每一层只学习一个特征图),达到降低冗余性的目的。
ShuffleNetv2 论文详解 【2021-05-18】ShuffleNet v2 论文最大的贡献在于看到了 GPU 访存带宽(内存访问代价 MAC)对于模型推理时间的影响,而不仅仅是模型复杂度:FLOPs 和参数量 Params 对于推理时间的影响,并由此提出了 4 个轻量级网络设计的原则和一个新颖的 卷积 block 架构-ShuffleNet v2。
RepVGG 论文详解 【2021-05-10】RepVGG 是为 GPU 和专用硬件设计的高效模型,追求高速度、省内存,较少关注参数量和理论计算量。在低算力设备上,可能不如 MobileNet 和 ShuffleNet 系列适用。
MobileNetv1 论文详解 【2021-05-02】MobileNet 论文的主要贡献在于提出了一种深度可分离卷积架构(DW+PW 卷积),先通过理论证明这种架构比常规的卷积计算成本(Mult-Adds)更小,然后通过分类、检测等多种实验证明模型的有效性。
Pytorch基础-tensor数据结构 【2021-03-07】torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array,本文详细介绍了 Tensor 的数据类型、属性以及如何创建。